FINITE ELEMENT METHOD II

Autumn 2015

Lectures (15h):

- 1. Accuracy, error estimation and adaptive remeshing
- 2. Heat flow and thermal stresses in FEM
- 3. Introduction to structural dynamics, free vibrations
- 4. Nonlinear problems in mechanics of structures basic numerical techniques
- 5. Orthotropic materials and composite structures
- 6. Parametric modeling and design optimization

Computer lab (15h):

Modeling simple problems of: thermal stresses, contact mechanics, plasticity and residual stresses, free vibrations, buckling, parametric modeling

References:

- [1] Lecture notes from the web site: <u>http://meil.pw.edu.pl/zwmik/ZWMiK/Dla-studentow2/Finite-Element-Method-II</u>
- [2] Moaveni S.: Finite element analysis. Theory and applications with ANSYS. Paerson Education, 2015.
- [3] Kleiber M. (red.): Komputerowe metody mechaniki ciał stałych, seria Mechanika Techniczna XI, Warszawa PWN 1995.
- [4] Xiaolin Chen, Yijun Liuv: Finite Element Modeling and Simulation with ANSYS. Workbench, CRC Press 2014
- [5] Huebner K. H., Dewhirst D. L., Smith D.E., Byrom T. G.: *The finite element method for engineers*, J. Wiley & Sons, Inc., 2001.
- [6] Zienkiewicz O.C., Taylor R.: The Finite Element Method different publishers and editions
- [7] Krzesiński G., Zagrajek T., Marek P., Borkowski P.: MES w mechanice materiałów i konstrukcji. Rozwiązywanie wybranych zagadnień za pomocą programu ANSYS, Of. Wyd.PW 2015
- [8] Bijak-Żochowski M., Jaworski A., Krzesiński G., Zagrajek T.: Mechanika Materiałów i Konstrukcji, Tom 2, Warszawa, Of. Wyd. PW, 2014

Assessment based on the final test and the results of computer lab work

1. ACCURACY OF FE ANALYSIS. ERROR ESTIMATION AND ADAPTIVE REMESHING

<u>Modeling error</u> ϵ_s

Depends on the accuracy of the available information about the problem and knowledge of the analyst $(1D - 2D - 3D \text{ models}, \text{ linear}, \text{ nonlinear}, \text{ assumed simplifications}, reliable information concerning material properties}, loads.)$

Discretization error ε_d

Depends on the mesh density, types of the elements - shape functions, the shapes of the finite elements

Discrete solution versus exact solution of the continuous problem

There are some mathematical convergence requirements in FEA concerning the mesh, shape functions, and rules of FE model building.

Numerical error ε_n

$$[K]\{q\} = \{F\},$$

$$[K+\delta K]\{q+\delta q\} = \{F+\delta F\}. \qquad \longrightarrow \qquad \frac{\|\delta q\|}{\|q\|} \le \|[K]\| \|[K]^{-1}\| \left(\frac{\|\{\delta F\}\|}{\|\{F\}\|} + \frac{\|[\delta K]\|}{\|[K]\|}\right)$$

condition number of the matrix K

$$cond([K]) = ||[K]|| ||[K]^{-1}||.$$

Norm of a matrix (vector)- a measure of magnitude L₂- Euclidean norms

Vector norm

 $\|\{q\}\| = \left(\sum_{i=1}^{n} (q_i)^2\right)^{\frac{1}{2}},$

Matrix norm

$$\|[K]\| = \left(\sum_{j} \sum_{i} (k_{ij})^{2}\right)$$

(matrix norm induced by the vector norm)

1

Max norms (L_~ norms)

$$\|\{q\}\| = \max_{i} |q_{i}|, \qquad \|[K]\| = \max_{i} \left(\sum_{j} |k_{ij}|\right).$$

A problem with a lsmall condition number is said to be **well-conditioned**, while a problem with a high condition number is said to be **ill-conditioned**.

 $\operatorname{cond}(\mathbf{K}) \mid \geq 1$ $cond(K) \approx 1$ - problem well-conditioned cond(K)» 1 - problem ill-conditioned Reasons of ill-conditioning of the problems in FE stress analysis - great differences between stiffness of FE elements, unstable boundary conditions

The example (ill conditioned problem):

First equation

Sensitivity to the slop change K_A<<K_B system ill conditioned

\mathbf{q}_2

Round–off error

As a general rule, if the condition number $cond(K) = 10^k$, then you may lose up to maximum k digits of accuracy during the solution of the system of linear equations. However, the condition number does not give the exact value of the maximum inaccuracy that may occur in the algorithm.

 k_{R}

$$r \ge p - \log_{10} \left(cond \left([K] \right) \right)$$

p – number of significant digits in the computer representation of numbers

r – number of significant digits of the result

In FE models cond(K) reaches 10^8

A posteriori error approximation techniques

Element and nodal solution in FE program postprocessors (PLESOL, PLNSOL in ANSYS)

FE solution provides the continuous displacement field (from element to element), and the discontinuous stress field. To obtain smooth stress distribution, the averaging of the stresses in the nodes is performed (*nodal stresses*).

Rectangular plate with a hole under tension. The model of the quarter of the structure. The stress component σ_y Discontinuous "element solution" (left) and averaged continuous "nodal solution" (right). Six-node triangular plane elements

Basic relations between displacements, strains, stresses and strain energy within finite elements (the relations discussed during FEM I lectures)

Displacement field over the element is interpolated from the nodal displacements:

 $\{u\} = [N(x, y, z)] \{q\}_e$, where $\{q\}_e$ - nodal displacements vector, [N] - shape functions matrix.

(u)

For example for the simplest triangular element with 3 nodes and 6 DOF the relation

where N_i are the linear functions

Shape functions N_{ii} are usually polynomials defined in local (element) coordinate systems.

Displacements, strains and stresses within each element are defined as the functions of the nodal displacements

$$\{u\} = [N] \{q\}_e,$$

$$\{\varepsilon\} = [R] \{u\} = [R] [N] \{q\}_e = [B] \{q\}_e, \quad [B] - \text{strain-displacement matrix}, \quad [R] - \text{gradient matrix}$$

$$\{\sigma\} = [D] \{\varepsilon\} = [D] [B] \{q\}_e.$$

The strain energy of the element Ω_e is:

 $[k]_{e} = \int [B]^{T} [D] [B] d\Omega_{e}$

$$U_{e} = \frac{1}{2} \int_{\Omega_{e}} \lfloor \varepsilon \rfloor \{\sigma\} d\Omega_{e}, \qquad \qquad U_{e} = \frac{1}{2} \int_{\Omega_{e}} \lfloor q \rfloor_{e} [B]^{T} [D] [B] \{q\}_{e} d\Omega_{e}, \qquad \qquad U_{e} = \frac{1}{2} \lfloor q \rfloor_{e} [k]_{e} \{q\}_{e}.$$

where

is the stiffness matrix of the element (symmetrical, singular, semi-positive defined)

stress vector at node n of element i

$$\left\{\boldsymbol{\sigma}\right\}_{n}^{i} = \begin{cases} \boldsymbol{\sigma}_{x} \\ \boldsymbol{\sigma}_{y} \\ \boldsymbol{\sigma}_{z} \\ \boldsymbol{\tau}_{xy} \\ \boldsymbol{\tau}_{yz} \\ \boldsymbol{\tau}_{xz} \\ \boldsymbol{\tau}_{xz} \end{cases}_{n}^{i} \neq \left\{\boldsymbol{\sigma}\right\}_{n}^{2} \neq \left\{\boldsymbol{\sigma}\right\}_{n}^{3} \neq \dots$$

averaged stress vector at node n:

$$\left\{\sigma\right\}_{n}^{av} = \frac{\sum_{i=1}^{k} \left\{\sigma\right\}_{n}^{i}}{k}$$

$$\sigma\}_{n}^{av} = \frac{\sum_{i=1}^{k} \{\sigma\}_{n}^{i}}{k}$$

Initial mesh. SERR and SDSG error distribution

SDSG - $\Delta \sigma_i = maximum$ absolute value of any component of $\{\Delta \sigma\}_n^i = \{\sigma\}_n^i - \{\sigma\}_n^{av}$ for all nodes connected to element

The energy error over the model

 $e = \sum_{i=1}^{l.el.} e_i$

The energy error can be normalized against the strain energy

$$\mathrm{SEPC} = 100 \left(\frac{e}{U+e}\right)^{\frac{1}{2}}$$

U - total strain energy over the entire model

SEPC – percentage error in energy norm

The e_i values can be used for adaptive mesh refinement. It has been shown that if e_i is equal for all elements, then the model using the given number of elements is the most efficient one.

This concept is also referred to as "error equilibration" ($e_i = \text{const}$, SEPC< S₀).

Adaptive Meshing Techniques

- Automatic refinement of FE meshes until converged results are obtained
- User's responsibility reduced to generation a good initial mesh

Final FE mesh and the results - Sy distribution (percentage error in energy norm SEPC=0.811%, uniform error distribution e_i = const)

Selective adaptive meshing

If mesh discretization error (measured as a percentage) is relatively unimportant in some regions of the model, the procedure may be speed up by excluding such regions from the adaptive meshing operations. Also - near singularities caused by <u>concentrated loads</u> and <u>at boundaries between</u> <u>different materials</u>.

Types of refinement in adaptive meshing :

h-refinement: reduction of the size of the element ("*h*" refers to the typical size of the elements)

p-refinement: increase of the order of the polynomials on an element (shape functions from linear to quadratic, etc.)

r-refinement: re-arrangement of the nodes in the mesh

hp-refinement: combination of the h- and p-refinements.